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Abstract
Biological variation is commonly measured at two basic levels: variation within individual

communities, and the distribution of variation over communities or within a metacommunity.

We develop a classification for the measurement of biological variation on both levels: With-

in communities into the categories of dispersion and diversity, and within metacommunities

into the categories of compositional differentiation and partitioning of variation. There are

essentially two approaches to characterizing the distribution of trait variation over communi-

ties in that individuals with the same trait state or type tend to occur in the same community

(describes differentiation tendencies), and individuals with different types tend to occur in

different communities (describes apportionment tendencies). Both approaches can be

viewed from the dual perspectives of trait variation distributed over communities (CT per-

spective) and community membership distributed over trait states (TC perspective). This

classification covers most of the relevant descriptors (qualified measures) of biological vari-

ation, as is demonstrated with the help of major families of descriptors. Moreover, the classi-

fication is shown to open ways to develop new descriptors that meet current needs. Yet the

classification also reveals the misclassification of some prominent and widely applied de-

scriptors: Dispersion is often misclassified as diversity, particularly in cases where disper-

sion descriptor allow for the computation of effective numbers; the descriptorGST of

population genetics is commonly misclassified as compositional differentiation and con-

fused with partitioning-oriented differentiation, whereas it actually measures partitioning-

oriented apportionment; descriptors of β-diversity are ambiguous about the differentiation

effects they are supposed to represent and therefore require conceptual reconsideration.

Introduction
Over the past decades, a confusingly large number of measures have been proposed for the
quantification of biological variation (for a selection merely of “diversity” indices see e.g. [1]),
yet relatively few of them are commonly used. Even ecologists and population geneticists who
are aware of the richness of this repertoire may be tempted to apply the same measures that ev-
eryone else does, arguing that this ensures comparability between investigations. While this is
certainly true, the restriction to a few measures leaves other measures and their important un-
derlying concepts unused. This situation is aggravated by the fact that some of the commonly
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used measures suffer from widespread misinterpretation. Moreover, when conceptual or termi-
nological aspects of measures of biological variation are addressed, these are restricted to the
notion of diversity as the only category (for more recent contributions see e.g. [2] or [3] or
refer to specifically population genetic measures as in [4]).

In this paper, an attempt is made to extend coverage of measures of biological variation by
showing that they can be conceptually distinguished into four primary categories of variation:
dispersion, diversity, compositional differentiation between communities, and partitioning of
variation. The specifically biological reasoning for this classification is provided in the next sec-
tion. Besides biological reasoning, the focus is set on developing and specifying these categories
in ways that allow proper assignment of known measures, or others to be yet developed, to the
categories. To prevent possible misunderstanding, it should be emphasized that the term classi-
fication is applied here to the conceptualization of categories of measures rather than to the ad-
vancement of methods of assigning measures to given categories or classes. The conceptual
emphasis also means that statistical problems of estimating or testing of measures from sam-
ples will not be pursued in this paper.

The present approach explicitly builds on the elementary ingredients of variation: frequen-
cies (or more generally, quantitative representations of the presence) of types, and differences
between the types. On a high level of generality, types are defined by the states of any trait of
the members of a community. (For more explanation of trait, including examples, see the glos-
sary in Appendix A.) A community, in turn, is conceived of as any collection or ensemble of or-
ganisms that are connected and delineated by specified ecological or reproductive factors
(including functional species communities, populations as reproductive communities, etc.). It
is shown that an appropriate definition of difference between types allows consistent extension
of descriptors of variation of qualitative traits to descriptors of variation of quantitative traits
and, by this, reveals the connections and transitions between the categories of variation.

Following a brief reminder of what characterizes biological variation as compared to other
kinds of variation and their sources, the concept of difference is explained. On this basis, the
four essential categories of biological variation are derived. A discussion of several important
applications of this classification follows, from which suggestions for new types of measures
are shown to arise. These applications concern the duality of differentiation among communi-
ties and among trait states, the importance of distinguishing dispersion and diversity aspects of
dispersion effective numbers, the differentiation and apportionment approaches to partitioning
trait variation in metacommunities, the (mis)classification of GST and its relatives, and the clas-
sification of phylogenetic diversity. Basic definitions are given in the glossary in Appendix A.

Results and Discussion

Characteristics of biological variation
What characterizes biological variation as opposed to other forms of (non-biological) variation
and their sources? Biological variation can change, if the environmental conditions in which an
organism and its community is embedded change. This dependence of the trait state (or phe-
notype) of specified traits of organisms on their genotypes and environments is basically char-
acterized by norms of reaction. In systems theory, norms of reaction are defined as mappings
that assign environmental conditions (independent or input variable) to trait states (dependent
or output variable), where the constructive specification of the assignment (system state) is re-
alized by the genotype (or idiotype) and its epigenetic (regulatory) state. Apparently, in most
cases neither the environmental conditions nor the portion of the genome involved in the ex-
pression of an organism’s trait are amenable to exhaustive observation. This does not, however,
detract from the significance of the idealizing concept of the reaction norm, which was initially

Classifying Measures of Biological Variation

PLOS ONE | DOI:10.1371/journal.pone.0115312 March 25, 2015 2 / 25



proposed in 1909 by R. Woltereck [5] (also see [6] for historical context). It follows that varia-
tion in traits of organisms can be attributed to two effects, the genetic effect, which is intrinsi-
cally qualitative or discrete, and the environmental effect, which may be quantitative and
potentially continuous.

Opportunities to separate these two effects increase with decreasing range of the norms of
reaction and thus with increasing heritability of the trait variation. (This is the realm of quanti-
tative genetics as specifically addressed in the book of Namkoong et al. [7].) While sufficient
separation of genetic from environmental effects promotes evolutionary adaptation of commu-
nities, broad-ranged norms of reaction are a sign of physiological adaptation (see e.g. the books
of Levins [8] or Brandon [9]). The extension of this basic idea to more complex and less rigor-
ously contained (isolated) units of heredity, such as species or (more generally) monophyletic
groups, is straightforward. The description and analysis of biological variation is therefore
largely concerned with traits that are either under chiefly genetic control, and are thus of pre-
dominantly qualitative (discretely varying) nature, or that vary more or less continuously with
a tendency to cluster. Herewith, clustering patterns are governed by both the genetic and the
environmental variation realized in the community under study as well as by the genotype-
environment associations (joint frequency distribution of genotypes and environments) and by
the genotype-environment interactions (differential effects of genotype and environment on
phenotype expression).

Particularly when clustering or isolation tendencies within communities become more pro-
nounced, the case of community subdivision becomes relevant. Subdivisions, which can result
from adaptational specialization or differentiation but also from random effects, can be consid-
ered as communities in their own right. Their totality then can be viewed as a metacommunity
(i.e., totality of individuals from a set of communities). Indeed, the formation of metacommu-
nities is a well-known means of adaptational response via the evolution of local adaptations, be-
tween which relevant functional (including reproductive) relations are sustained among the
constituent communities (see e.g. [8]). In this case, studies of the distribution of biological vari-
ation must consider two sources of variation: within and between communities.

Considering this perception of biological variation, its measurement covers two basic levels,
variation within individual communities, and the distribution of variation over communities
or within a metacommunity. The former level is concerned with aspects relating to spread, or
dispersion, and aspects relating to numbers of types or distinct clusters, commonly addressed
in terms of diversity. The second level is characterized by differences in trait distribution be-
tween communities, as summarized under the term compositional differentiation, and by the
partition of the total (metacommunity) variation into variation within and between communi-
ties, commonly referred to as partitioning of variation.

Calling these four types of measures categories, it will be shown in the following that most
families of descriptors of biological variation, including newly suggested ones, can be classified
into or derived from one of the four. In this context, the term descriptor is understood to em-
phasize the conceptual underpinnings from which the respective measure draws its validity,
and by this enables comparison between a variety of situations or models. The validity of a de-
scriptor is thus to be judged by its compliance with its concept. In the present paper, this judge-
ment is argued to be most reliably based on the suggested classification and, by this, facilitates
identification of descriptors that are misclassified or misnamed.

Difference
The perception of variation requires the ability to recognize differences between entities (or ob-
jects) of observation. At the very beginning, any attempt to classify measures of variation
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should therefore be based on a comprehensive concept of difference. Clearly, no object differs
from itself, and thus every object is indistinguishable from itself. As soon as two different ob-
jects are considered, their distinguishability refers to a specified trait and, for example, to the
resolving capacity of the observational equipment used to identify the trait and to distinguish
its states. Of relevance here is not only the complexity of the trait, including its composition of
multiple subtraits, but also the level of resolution specified by the problem to be studied. Partic-
ularly the latter aspect may lead to situations where a trait (mostly multidimensional) is to be
studied under different resolution criteria with the aim of detecting hierarchical organizations
of biological variation into species, races, and ecotypes, for example. In essence, this implies
that objects considered indistinguishable at one level may be distinguishable at a lower level.

Once any means of qualitative or quantitative distinction is defined, it must be clarified
whether these means allow for consistent distinction of the objects under consideration. By
“consistent”, it is understood that the indistinguishability of any two objects should not be in-
validated by comparisons with any third object. Given any non-negative function d defined for
all pairs of objects under consideration, including pairs consisting of the same object twice (in
a matrix setting this would be the diagonal), two objects x and y are considered indistinguish-
able on the basis of this function if d(x, y) = 0, while they are considered distinguishable if
d(x, y)> 0. Consistency of such a function, in order to qualify it as a measure of difference,
then requires that indistinguishability of one object from another implies equal differences of
both from any third object (introduced as the “equivalence condition” by Bock [10]). The ele-
mentary requirements on a (consistent) measure d of difference are therefore (letting x, y, z de-
note objects from a specified set):

(a) d(x, y)� 0

(b) d(x, x) = 0

(c) d(x, y) = 0 implies d(x, z) = d(y, z) for all z

Requirement (c) also implies that d(y, x) = 0 follows from d(x, y) = 0. Otherwise d(x, y) is not
required to be symmetric, i.e., d(x, y) need not equal d(y, x) if both are positive. An illustration
of the structure imposed especially by condition (c) on the matrix of differences is given in
Fig. 1. There are many measures referred to as difference measures that are asymmetric. Exam-
ples are measures based on set differences where the difference of set A from set B is deter-
mined by the number of elements in A that are not in B. Several indices used in distinguishing
DNA sequences are of this kind (for a survey see [11]). Yet, most of these do not meet the
equivalence condition and are therefore not measures of difference in the above sense.

In the first place, measures of difference provide information on the way in which a collec-
tion of objects is subdivided into separated groups of indistinguishable objects. To see this, con-
sider the relation* between members of the collection that is defined by x* y if d(x, y) = 0.
This relation is reflexive (x* x), symmetric, and transitive. The latter follows from requirement
(c), which implies that d(x, y) = 0 and d(y, z) = 0 entail d(x, z) = d(y, z) = 0. Hence, x* y and
y* z imply x* z, which confirms transitivity of the relation and classifies it as an equivalence
relation. The equivalence classes associated with the relation thus correspond to the groups of
indistinguishable objects, and they form a partition of the collection that will be referred to as
the primary partition generated by the difference measure d. The primary partition can also be
conceived as a trait with states (or types) given by the equivalence classes.

This property of difference measures becomes particularly relevant, when differences are
measurable between objects without reference to any particular trait. In this case, the primary
partition establishes a hitherto not realized trait. Moreover, any measure of “difference”
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between the states of a specific trait that does not obey the equivalence condition cannot be
used in the detection of further trait structure hidden in the initial trait.

Among the host of difference measures, there is one family that is of special importance in
that it sets an upper limit to difference and identifies this with the notion of complete distinct-
ness of objects. This family will be referred to asmeasures of dissimilarity. It includes as a spe-
cial subfamily measures of difference that assume only two values (zero indicating sameness,
any other fixed positive value indicating differentness), known under the term discrete metrics.
Recalling the above definition of the primary partition, discrete metrics can be used to charac-
terize qualitative traits in the sense that two objects are either indistinguishable or completely
distinct in their characteristics.

The transition from qualitative to quantitative traits becomes particularly evident when con-
sidering genetic traits, the states of which may be determined by the alleles at several gene loci
(multilocus traits). Even though each component (locus) of such a trait is intrinsically qualita-
tive, large numbers of components can result in almost gradual differences between the states
of the (multilocus) genetic trait. While genetic types are recognized as being completely distinct
if they share no alleles at the studied loci, the possible degrees of dissimilarity become ever
more numerous as the number of loci increases. In a sense, the trait becomes more and
more quantitative.

Category: Dispersion
The more the members of a collection differ to larger extents from each other, the more dis-
persed or spread-out the variation pattern is judged to be. This roughly describes the
dispersion aspect of variation. Therefore, dispersion measures are generally specified as

Fig 1. Difference. The asymmetric measure d of difference between objects xi illustrated in matrix form is consistent, since it fulfills requirements (a) d(x, y)�
0, (b) d(x, x) = 0, and (c) d(x, y) = 0 implies d(x, z) = d(y, z) for all z. The resulting equivalence classes are {x1, x2, x3}, {x4, x5}, and {x6}. The measure cannot
distinguish between objects from the same class, but it can distinguish between objects from different classes. These three classes represent the primary
partition of objects into the three types that are distinguishable by this measure.

doi:10.1371/journal.pone.0115312.g001
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. non-negative functions of the differences between types and their frequencies, which

. equal zero only if all differences are zero, which

. do not decrease as differences increase, and which

. do not exceed the maximum difference realized.

Typical examples of dispersion measures are maximum differences and various kinds of aver-
age differences among collection members. The classics are thus maxx, y d(x, y) and ∑x, y px �
py � d(x, y), where px and py are the frequencies of the indexed objects or types. Particularly av-
erage differences are frequently considered to measure diversity, even though that term is usu-
ally used in the context of observations on discrete variables with a finite number of states (see
e.g. the seminal paper of Rao [12]).

The number of types (or equivalence classes as given by the primary partition) that support
an observed dispersion does not, however, explicitly show up in its measurement. This is illus-
trated in Fig. 2, where for each of two common measures of dispersion, the same value is real-
ized in the presence of very different numbers of types (three and eight). The first measure, the
variation range, is given by maxx, y d(x, y), where d(x, y) = jx − yj. The second measure, the var-

iance, has the form ∑x, y px � py � d(x, y) with dðx; yÞ ¼ 1
2
ðx � yÞ2.

Fig 2. Dispersion. Two examples demonstrating that dispersion does not reflect the number of types. Upper frame: Defining dispersion as the variation
range maxx, y d(x, y) for d(x, y) = jx−yj, the smaller set {−5,0,5} has the same dispersion of 10 as the larger set {-5,-3,-2,-1,1,2,3,5}. Lower frame: Defining
dispersion as the variance ∑x, y px � py � d(x, y) with dðx; yÞ ¼ 1

2 ðx � yÞ2, the smaller set {−4,0,4} has approximately the same dispersion of ca. 10.667 as the
larger set {-5.354126, -3, -2, -1, 1, 2, 3, 5.354126}.

doi:10.1371/journal.pone.0115312.g002
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In fact, consideration of numbers of types implies a change in the aspect of variation, and
this requires specification of the conditions under which the transition between the two aspects
is feasible. Since the counting of types assumes that they are unambiguously distinguishable,
the pertinent difference measure is the discrete metric, as explained above. This, in turn, re-
quires a decision on which difference value may ideally characterize distinctness of individuals.
There are at least two ways to achieve this goal. An obvious way is to choose the maximum dif-
ference realized in the collection to characterize complete distinctness. If the difference mea-
sure is a measure of dissimilarity, the situation of complete distinctness is implied by the
measure itself, and this is independent of the respectively realized differences.

Given an appropriate discrete metric, the last obstacle on the way to an unambiguous
counting of types is presented by variable frequencies among the types. Removing this obstacle
by assuming equal frequencies, dispersions can be computed for the accordingly defined
ideal situation, in which the dispersion depends on the number of types only. Equating the
ideal to the observed dispersion value and solving the equation for the number of types yields
the desired relation between measures of dispersion and numbers of types supporting
the dispersion.

In essence, the above procedure repeats the steps to be taken when computing “effective
numbers” according to the underlying general concept of Gregorius [13]. Since “effective num-
ber” is a notion that is more familiar in ecology and population genetics than in other fields
such as economics, the following explanations will use the term community in place of collec-
tion, even though in many respects the more comprehensive term collection would also be ap-
propriate. When applied to measures of dispersion as the characteristic variable of
communities and the number of types as the target variable of communities, the concept re-
quires definition of ideal communities (a) that realize all dispersion values occurring among the
(non-ideal) communities under consideration, and (b) in which the number of types is a strict-
ly increasing function of the dispersion value. The effective number (i.e. the effective value of
the target variable) then results from equating an observed dispersion with the dispersion of an
ideal community (see below) and solving for the number of types in the latter. Since this num-
ber refers to dispersion characteristics, it is termed dispersion effective number of types in accor-
dance with common practice. For an illustration of the concept see Fig. 3.

What is an ideal community for dispersion? Requirement (b) indeed implies that in ideal
communities, different types are not allowed to vary in their difference measures nor in their
frequencies. This follows from the fact that the same dispersion can be realized for various
combinations of differences and frequencies of types; such possibilities must be excluded from
an ideal community in order to establish a unique assignment of dispersion values to number
of types. Hence, all types in the ideal community have equal frequencies, and the correspond-
ing dispersion measure is a discrete metric. Therefore, since by requirement (a) dispersions
cannot exceed the upper value of the discrete metric, the maximum value of all differences
equals that within the ideal communities. As a consequence, a dispersion effective number of
types exists only for difference measures that are dissimilarity measures. Yet not all dispersion
measures based on dissimilarities allow for the computation of effective numbers. Examples
are listed in Table 1.

Replacement of dissimilarities by their complements, i.e., similarities, converts measures of
dispersion intomeasures of concentration. The procedure leading to the definition of the dis-
persion effective number applies identically to similarities and thus to the definition of the con-
centration effective number. An example of a family of dispersion measures and its
corresponding family of concentration measures together with their respective effective num-
bers is given in Table 2.
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Fig 3. Effective variable. Diagram of the ingredients of the concept of effective variable and their
relationships. Left: Three (real) communities that are identical in their characteristic variable (CV) but differ in
their target variable (TV). Right: The ideal community that equals the real communities in its characteristic
variable; the uniquely specified target variable of the ideal community summarizes the values of the target
variable of the real communities into a single effective value.

doi:10.1371/journal.pone.0115312.g003

Table 1. Dispersion measures with no effective number.

. maxx, y d(x, y)

.
P

xpx �
�P

y:y 6¼x py � dðx; yÞ=ð1� pxÞ
�

.
P

x 6¼ypx � py � dðx; yÞ=ð1�P
zp

2
z Þ

An effective number does not exist for the following measures of dispersion, since they do not fulfill

requirement (a) of the concept of effective number

doi:10.1371/journal.pone.0115312.t001

Table 2. Dispersion measures with effective numbers.

Dispersion measure aD≔
�P

xpx � ð
P

y dðx; yÞ � pyÞa�1� 1
a�1 ð0 � a 6¼ 1Þ

aDideal = 1 − n−1 ) dispersion effective number = (1 −

a D)−1

For a = 2, where 2D = ∑x, y px � py � d(x, y), see [41]

Concentration measure aC≔
�P

xpx � ð
P

ysðx; yÞ � pyÞa�1� 1
a�1 ð0 � a 6¼ 1Þ

aCideal = n−1 ) concentration effective number = a C−1 [42]

Effective numbers for a family of dispersion measures (aD) and a family of concentration measures (aC)

based on a dissimilarity measure 0 � d(x, y) � 1 and a similarity measure s(x, y) = 1 − d(x, y), respectively;

n ≔ number of types.

doi:10.1371/journal.pone.0115312.t002
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Effective numbers can thus be obtained for some but not all measures of dispersion. Effec-
tive numbers (or number equivalents) are likewise essential in the conceptualization of diversi-
ty indices, as will be demonstrated in the next section.

Category: Diversity
In view of the overwhelming amount of work devoted to the concept of diversity and its vari-
ants, it is mandatory to first recall a basic feature of diversity measurement that seems to be
widely agreed upon and then to see how this can be consistently extended to cover common
notions. In the first place, and contrasting with the concept of dispersion, diversity aims at
quantifying the heterogeneity of a community with respect to a qualitative trait, the states of
which are equally distinct by definition. Using already introduced terminology, this implies
that variation be characterized by a discrete metric, as variable differences between types are
not at issue. The probably most obvious way to assess the heterogeneity of a community then
consists in counting how many types of individual occur in the community. At this stage, fre-
quencies of types are of no concern. As separate from dispersion, type counts therefore charac-
terize the second of the two aspects of variation referred to in the section on biological
variation. Type counts can be considered to constitute the intrinsic concept of diversity. The
types of primary interest in community ecology and population genetics are species and alleles,
respectively, and the corresponding type counts are commonly termed species richness and
allelic richness.

Mere type counts may lose biological and statistical import when the representation of types
in a community varies distinctly. Representation criteria may be determined, for example, by
the number of community members showing a type, the area occupied by carriers of a type, the
total biomass of the carriers of a type, the average similarity of a type to all community mem-
bers, the average difference of a type from other types together with its frequency, or the fre-
quency of individuals that do not differ by more than a given degree from some specific type.
All of these criteria and their implied weighting of types affect the intrinsic concept of diversity
only via their relative import and thus, after normalization, yield sums of weights equal to one.
Ideally, however, the intrinsic concept of diversity would be realized only when all types are
represented equally. Consequently, when the number of equally represented types is increased,
any measure of diversity should also increase, and it should decrease when types become less
equally represented.

These demands on measures of diversity consistently extend the intrinsic concept, in that
they stress the closeness to an even representation of types as a principle by which diversity can
be increased. This can be clad into what can be called an evenness criterion to be posed on legit-
imate measures of diversity, and which has been given different formulations and different
names (such as “principle of transfers”, see e.g. [14] or [15]). Concisely, the condition requires
that diversity never decreases whenever the difference in representation between two types de-
creases while the sum of their representations remains the same. To avoid confusion with other
notions such as “component of diversity” to be discussed later on, the addition “in the strict
sense” will be used where appropriate to distinguish measures of diversity that meet the
evenness criterion.

Given this extension of the term “diversity”, a direct connection to its intrinsic concept can
be established with the help of the previously introduced notion of effective numbers. In the
present context, the characteristic variable is the respective measure of diversity, the target vari-
able is the number of types, and in the ideal communities all types are equally represented. Re-
quirements (a) and (b) of the concept of effective number are obviously fulfilled, so that a
diversity effective number of types is unambiguously defined. Because of the monotonicity in
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requirement (b), this effective number fulfills the evenness criterion and is thus again a diversi-
ty measure. Some common and a few less common examples of diversity measures and their ef-
fective numbers are listed in Table 3 (for a more comprehensive account see e.g. [14, 16]; these
authors also refer to the effective number as the “numbers equivalent”).

Diversity for variable differences
The possibility of uniquely characterizing equally distinct types by discrete metrics hints at the
possibility that some measures of dispersion, when applied to discrete metrics, may acquire the
characteristics of a measure of diversity. Yet, attempts to further extend the intrinsic concept of
diversity to include variable differences, as is the normal case for dispersion measures, encoun-
ter the problem that the condition of distinctness of types may not be met and that thus the
evenness criterion (see glossary) no longer applies. The question is thus whether and how the
condition of distinctness of types and the evenness criterion can be restored under
variable differences.

The specifically biological motivation behind this question becomes clear when recalling the
characterization of biological variation in terms of norms of reaction. These norms basically in-
volve genetic types and thus qualitative sources of trait variation. The trait variation may be de-
scribable on a metric scale, but in each environment the variants are distinct to the degree to
which the genetic effects penetrate (are expressed). Characteristics of a qualitative trait are thus
retained. As the environment varies, the trait expressions of the genetic types may also vary,
assigning to each genetic type a range of trait variants. In combination with genotype-
environment associations and interactions, these ranges may overlap, blurring the distinction
between genetic types. As a result, when plotting the frequency distribution of the trait varia-
tion over that variation, multimodality of the distribution (i.e., a number of separate peaks) will
often show up, especially if different types dominate in different environments. Multimodality
in trait distribution therefore mirrors the qualitative variation in the underlying genotypes and
possibly the environmental conditions. Trait variation is thus no longer strictly distinct, but it
would be discontinuous. Thus the diversity category remains relevant.

Table 3. Diversity effective numbers.

Diversity measure Diversity effective number

∑i pi � r(pi) 1/r−1(∑i pi � r(pi))
p � r(p) is concave (1) if r is strictly decreasing

— Special cases —

r(p)

1�P
ip

a
i ; a > 1 1−pa−1 ðPip

a
i Þ

1
1�a (2)

P
ip

a
i ;0 � a < 1 pa−1 ðPip

a
i Þ

1
1�a (2)

−∑i pi � loga pi, 0 < a 6¼ 1 −loga p
Q

ip
�pt
i

(2)

∑i pi � (1 − pi)
a, 0 < a � 1 (1 − p)a ð1� ½Pipi � ð1� piÞa�

1
aÞ�1

P
ipi � cosðpi � π2Þ cosðp � π2Þ π

2 =arccos
P

ipi � cosðpi � π2Þ
� �

(1) see Appendix B for a proof of the evenness criterion
(2) also called Hill numbers [43] or Rényi diversity [44]

Examples of diversity measures and their effective numbers; pi: = relative representation of the i-th type

(only pi > 0 considered; r(p) is a non-negative function of p (0 < p � 1)

doi:10.1371/journal.pone.0115312.t003
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Statements on distinctness, or distinguishability, ideally entail threshold levels of difference
(levels of resolution), above which objects are perceived to be different. An indispensable step
towards extension of the intrinsic concept of diversity therefore asks for methods that yield a
partition of a community into classes, such that two objects belonging to different classes have
a difference that exceeds the threshold level, while objects within the same class do not. Such
methods are well known from the field of cluster analysis. Careful selection of the clustering
method may even give rise to transformations (the so-called cophenetic differences) of the ac-
tual differences between types that more closely reflect desirable aspects of “neighborhood” or
distinctness than do the actual differences. In a dendrogram, for example, the cophenetic dif-
ference between two types is measured as the height of the smallest cluster containing the two
types. Such transformed differences serve as the basis for further, more directed,
diversity analyses.

Each partition obtained from an appropriate clustering method can then be considered as a
trait with states given by the classes and state frequencies given by the sizes of the classes. In
this way, the condition of distinctness of types and the evenness criterion are applicable, and
measures of diversity as well as their effective numbers are defined for each level of resolution.
Plotting the diversity of each partition against its corresponding level of resolution (clustering
level) yields diversity portraits in the form of decreasing step functions (for an example see
Fig. 4). The decreasing form of the portrait follows the form of the hierarchical ordering of the
partitions and is implied by the evenness criterion. For more detailed explanations and inter-
pretations of diversity portraits see [17].

Even though diversity effective numbers and dispersion effective numbers refer to the same
ideal communities (discrete metric, equal type frequencies), they should not be confused. The
two kinds of measure are distinguished by the requirements of the evenness criterion. As
Pavoine et al. [18] showed in some detail, dispersion measures are maximized for equal type
frequencies only for very special kinds of difference metrics (such as ultrametrics). Application
of the evenness criterion to dispersion measures is thus not meaningful, unless the underlying
differences imply a partition of the community into classes (as ultrametrics do). Even in these
special cases of difference metrics, it should be kept in mind that the two effective numbers,
though equal in value, are descriptors of different concepts and different categories
of variation.

As was mentioned above, an alternative approach to the consideration of variable differ-
ences or similarities between types in a diversity context consists in regarding the difference of
a type from other types as a contribution to its representation. An example is provided by mul-
tiplication of a type’s frequency by its average difference from the other types (as is implicit in
the second example of Table 1). Normalization by the sum over types (as appears as a measure
of dispersion in the example of Table 1) then yields the required relative representation of the
types. In this case, the representation of a type increases with its frequency and its isolation
from other types (the latter measured by the average difference). Any legitimate measure of di-
versity can then be applied to this type representation with an appropriate interpretation. For
diversity effective numbers, such an interpretation could be in terms of an effective number of
isolated types.

Category: Compositional differentiation
Differences between whole communities are the subject of interest in studies of compositional
differentiation in metacommunities. The objects to be distinguished are thus communities, and
the relevant aspect of variation consists in the differences in trait distribution between commu-
nities. Amounts of variation within the individual communities as well as in the total
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Fig 4. Diversity portraits. Top: Difference matrix of five types and the corresponding clustering of types for
increasing difference level (y-axis). In addition to the primary partition, three hierarchically organized higher
order partitions arise. Bottom: Four diversity portraits based on the above difference matrix showing Rényi
diversity of different orders a as functions of difference level. In all cases, the diversity function shows a
stepwise decrease as the difference level increases (see [17]).

doi:10.1371/journal.pone.0115312.g004
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metacommunity are not of primary relevance. Obviously, there are two tiers of difference in-
volved in the creation of compositional differentiation:

. differences in type between individual members of the metacommunity,

. differences between communities, whereby this second tier depends on the first.

Moreover, a major and pervasive conceptual characteristic of compositional differentiation is
to be found in the perception that the differentness among communities cannot exceed a state
in which they share none of the attributes under consideration, irrespective of the quality of the
attributes. This identifies measures of compositional differentiation as measures of dissimilari-
ty in the above sense. Since complete dissimilarity among communities in turn presumes a per-
ception of complete differentness between individual members of the metacommunity, one
concludes that the concept of compositional differentiation involves measures of dissimilarity
at both tiers of difference.

So far, complete distinctness of two communities for a given measure of the difference in
type is equivalent to the complete distinctness of any member of either community from all
members of the other. The other extreme, the identity of two communities, can be unambigu-
ously depicted as follows: Consider the metacommunity that comprises only these two com-
munities and build the primary partition of the individuals within this metacommunity for
their types. Intersect the partition classes with the one and then the other community to obtain
the frequency of each class (type) in the respective community. Identity between the two com-
munities of the relative frequencies of each class indicates the absence of differentiation. For a
qualitative trait, this simply states that the frequency distributions of the types are identical for
both communities.

The extension of compositional differentiation to multiple communities then follows the
lead provided earlier for measures of dispersion. The underlying objects are now communities,
and their pairwise dissimilarities are based on the individual dissimilarities as explained in the
previous paragraph. The primary partition generated by the individual dissimilarities is to be
determined for the metacommunity consisting of all communities, and the distribution of the
resulting classes in each community is obtained from intersection of the classes with the respec-
tive community. Some dispersion measures yield measures of compositional differentiation,
such as the last two indices listed in Table 1, where d(x, y) is the dissimilarity between
communities x and y, and px is the relative size of community x. In contrast, the dispersion
measure 2D listed in Table 2 cannot be turned into a measure of compositional differentiation,
since the value it assumes for completely dissimilar communities varies with the sizes of the
communities.

Another type of measure of compositional differentiation summarizes the differences of
each community from its respective complement in the metacommunity. Reminiscent of the
symmetric set difference (see Fig. 5 for an illustration), it takes the form ΔSD = ∑x P(C = x) � Δ
(C = x, C 6¼ x), where P(C = x) denotes the relative representation of community x, and Δ(C =
x, C 6¼ x) denotes the difference between community x and its remainder (C 6¼ x) in the meta-
community. Note that ΔSD is not a dispersion measure in the sense that it increases with the
dissimilarities between any two communities. It increases only if communities become more
dissimilar from their respective remainder in the metacommunity. In fact, ΔSD can be consis-
tently derived in a way that is not driven by ideas of variation but rather that considers individ-
uals to be assigned to communities according to their types. ΔSD is then seen to constitute a
measure of association of community membership with trait state [19].

Any measure of compositional differentiation critically depends on the way in which the
underlying type differences and their distributions are transformed into community
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differences. Among the many conceivable ways, one is of central relevance in that it specifies
the minimum amount of change in type differences required in the trait distribution of one
community to make it match the trait distribution in another community. Details of the con-
ceptual justification and computational implementation of minimum differentiation are pro-
vided in [20]. In the special case of discrete metrics with values 0 and 1, the minimization
principle results in the familiar measure Dðp; qÞ ¼ 1

2

P
i j pi � qi j of difference between two

communities p and q with type frequencies pi and qi, respectively. In ecology, 1−Δ is tradition-
ally termed “percentage similarity” and is used in the quantification of β-diversity (see [21]). In
population genetics, Δ is often called the “allele-sharing distance” [22, 23].

Variable differences can be subjected to cluster analysis to yield a partition of the metacom-
munity at any clustering level (level of resolution), as was introduced in connection with the di-
versity category. The classes of a partition can be considered as types (states of a trait) that are
distinguishable at the respective level of resolution. Since distinguishability is the only criterion
separating the thusly created types, they can be represented by a discrete metric. For a given
partition, the intersection of its classes with the communities (as considered above for the pri-
mary partition) yields the distribution of the classes within each community. To this situation,
any measure of compositional differentiation can be applied that rests on discrete metrics. In
the same way that diversity portraits are obtained, one arrives at a differentiation portrait by
plotting the compositional differentiation of each partition against its corresponding level of
resolution. By definition, differentiation portraits are preferable over the computation of a

Fig 5. Compositional differentiation. Shaded areas represent the symmetric difference between four sets
(closed curves), illustrating the extent of compositional differentiation via community characteristics of any
one set that is not shared with its respective complement (modified from [40]).

doi:10.1371/journal.pone.0115312.g005
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single value of the minimum differentiation whenever threshold differences between individu-
als are suspected to trigger the operation of differentiating forces.

Duality of compositional differentiation
So far, compositional differentiation for a specified trait was viewed from the perspective of
communities that differ for the distribution of the trait states (the CT perspective). The reverse
perspective, where trait states are assessed for differences in the community membership of
their carriers (the TC perspective) may seem odd, yet it is relevant in many biological studies,
and there are even prominent cases where the two perspectives are confused. When writing the
joint frequency distribution of trait and community membership in matrix form as in Fig. 6,
CT refers to the columns and TC to the rows.

Plants with wind-dispersed seeds provide a typical example of the CT perspective, since the
location of the parents has much more influence on the community in which a seed settles
than its trait state or that of its parents, with the result that the communities are differentiated
for the trait states of the seeds that reach it. A contrasting example of the TC perspective is
given by mobile organisms, especially animals, that show differential disposition to stay in or
migrate to special habitats, with the result that types are differentiated for the communities in
which they dwell after migration [24].

From a mathematical point of view, these dual perspectives result by simply switching the

two variables T and C, so that DCT
SD would measure compositional differentiation of communi-

ties for a specified trait, while DTC
SD would measure the respective differentiation of trait states

for community membership (for an illustration of the two perspectives together with ΔSD val-
ues, see Fig. 6).

The easiest way to identify cases in which the perspectives are confused is to describe their
extremes. Thus, complete compositional differentiation of communities (CT perspective) im-
plies that all carriers of the same trait state belong to the same community. Conversely, when
trait states are completely differentiated for community membership (TC perspective), this im-
plies that individuals showing different trait states cannot belong to the same community.
From the CT perspective, communities are therefore monomorphic. This asymmetry in per-
spective vanishes in the absence of differentiation, since this case is characterized by stochastic
independence between the variables T and C, so that differentiation is absent from
both perspectives.

The TC perspective of differentiation in general probably becomes more familiar when it is
described in terms of the apportionment of variation. Apportionment of trait variation to com-
munities (which takes a CT perspective) describes the situation where individuals that differ in
type tend to occur in different communities. At the extreme, where the trait variation is fully di-
vided among communities, one again arrives at the situation of monomorphy within all com-
munities. The CT perspective of apportionment therefore seems to be related to the TC
perspective of differentiation [19]. Yet, this applies only at the extreme and does not allow the
apportionment approach to be regarded as part of the concept of compositional differentiation.
Instead, the apportionment approach belongs to a different category called “partitioning of var-
iation” that will be treated in the next section. It will be shown there that confusion of the no-
tions of differentiation and apportionment led to a far-reaching misnomer that triggered
misconceptions and misinterpretations of a commonly used descriptor.

Category: Partitioning of variation
Generally speaking, trait variation is considered to be partitioned, if it is divided among speci-
fied parts of a collective whole. The total variation can thus be perceived of as being composed
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Fig 6. Perspectives of differentiation. Example of the dual perspectives of differentiation based on a
qualitative trait T and community membership C. Top: Table of joint frequencies of the trait states and
communities and the corresponding marginal frequencies. Columns refer to the CT perspective, rows to the
TC perspective. Center: Illustrations of the joint frequency distribution and the distributions for the dual
perspectives CT (sorted by communities, columns) and TC (sorted by types, rows). Arrows emphasize the
direction of the perspective. Bottom: Values of the descriptors DCT

SD, D
TC
SD (compositional differentiation), D

(partitioning-oriented differentiation), andGST (partitioning-oriented apportionment) for the frequencies in the
table (for explicit specification of the descriptors, see text).

doi:10.1371/journal.pone.0115312.g006
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of variation that exists within and between the parts. This perception differs fundamentally
from that of compositional differentiation, for which neither the amount of total (metacommu-
nity) variation nor the amount of variation within communities are primary determinants (see
above). The partitioning notion governs much of biological theory on the distribution of or-
ganismic variability. It obtains its statistical support from the analysis of variance, which rests
on the fact that the total variance of a random variable (trait) equals the sum of the expectation
of the conditional variance (variation within) and the variance of the conditional expectation
(variation between). The conditioning event is provided by a second random variable, such as
community membership. Methods of extending this mathematical relationship to cover special
measures of difference between more complex trait states were developed with reference to Eu-
clidean spaces for example by Excoffier et al. [25] in a population genetic context and by
Pavoine et al. [26] in an ecological context. The latter authors also related their approaches to
ordination methods.

Variances and their generalizations to Euclidean spaces are special kinds of dispersion mea-
sure, and these differ conceptually from measures of diversity, as explained above. One can
therefore suspect that the method of decomposing variances into components cannot be direct-
ly translated into measures of diversity, although this is essentially what Whittaker proposed in
his seminal 1960 paper [21] by coining the terms α,- β- and γ-diversity. In fact, these terms and
their transformation into measures remains a matter of lively discussion to this day. Among
the three “diversities”, only γ-diversity seems to be generally accepted to unambiguously refer
to the diversity of a collection. α-diversity, which is commonly conceived of as an “average”
taken over the diversities realized within the collections that form the collective whole (com-
munities of a metacommunity), is also considered by many researchers to be a reasonable
proposition. However, besides the observation that an average of diversities is not a measure of
diversity of any specific kind of collection, this passes over the fact that there are different kinds
of averages, and that some of them do not accord well with the other two “diversities” (for one
of the earliest reminders of this fact see [27]). In any case, α-diversity is inferred from the diver-
sities measured within the communities, and by this it does not depend on differences in com-
position between communities.

Almost all researchers seem to agree with the idea that β-diversity should somehow reflect
the compositional heterogeneity between communities. As recalled above, Whittaker [21] in-
deed proposed the “percentage similarity” as a measure of β-diversity. Its inverse, the “percent-
age dissimilarity”, is a measure of compositional differentiation between two communities.
This confirms the idea of β-diversity, though surely not in terms of a measure of diversity. It
also hints at an early problem concerning distinction between the two categories of biological
variation: compositional differentiation and partitioning of variation. An impression of the un-
derlying terminological problems can be obtained from the more recent reviews of Jurasinski
et al. [28] and Jurasinski & Koch [3].

The desire to connect the three “diversities”, while preserving their conceptual motivations,
leads to the central requirement that measures of α-diversity should not exceed measures of
γ-diversity, and that both become equal only in the absence of differentiation among commu-
nities (for a concise statement of this requirement see e.g. [29]). This leaves β-diversity to ex-
plain and measure the difference between α- and γ-diversity as the result of differentiation, as is
familiar from decomposition of the total variance (γ) into components of variance within (α)
and between (β) collections. β-diversity is thus inferred from γ- and α-diversity, where α-diver-
sity in turn is inferred from the diversities within communities. Since the assessment of differ-
ences between communities need not depend on diversities within communities, β-diversity
may be considered to not depend on α-diversity (for more elaborate arguments on this view of
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independence of the two diversity components see [16]; in the next section, this topic together
with the notion of “components of diversity” is resumed in a more comprehensive context).

Apparently, the first problem to be solved is to find a suitable kind of averaging over diversi-
ties. Especially for diversity effective numbers as provided by the family of Rényi-diversities
(see Table 3), simple linear averaging fails. In this case a solution is provided for the Rényi-
diversity of order a by the power mean of order (1−a) with weights given by the community
sizes (see [30]; [31]). In connection with the multiplicative decomposition of γ-diversity into its
α and β components, Jost [16] argues in favor of power means based on equal community sizes
(which implies that γ is also to be determined for equal community sizes). There are in fact
even more averages that satisfy the above central requirements on measures of α-diversity. It is
straightforward to show that any average less than or equal to the power mean of order (1−a)
also satisfies the requirements. Since power means increase with their orders, any power mean
with order smaller than (1−a) is thus eligible for the measurement of α-diversity. One therefore
concludes that the evenness criterion in combination with the central requirements on α-diver-
sity does not suffice for the design of a canonical method of obtaining unique measures of α-
diversity for each admissible measure of diversity. It is not even clear whether each admissible
measure of diversity allows for a suitable measure of α-diversity.

However, once a suitable α-diversity has been identified for a diversity effective number,
Jost [16] argued that (for Rényi-diversities) measuring β-diversity by the ratio of γ- to α-diver-
sity allows for an interpretation of β-diversity as an “effective number of distinct communities”.
Herewith it should, however, be recalled that neither γ- nor α-diversity nor any function of the
two provide information on the state of complete differentiation between communities. There-
fore care should be taken to not generally identify the idea of “distinctness” of communities
with “completeness of differentiation”.

The differentiation aspect of β-diversity (which Jurasinski et al. [28] considered as a separate
category of β-diversity) can be made more explicit under the above demands on α-diversity if
one introduces the joint diversity ϕ of trait T and community membership C. ϕ is related to dif-
ferentiation by the fact that ϕ� γ holds, with equality only for complete differentiation [31].
Retaining the two extremal requirements on (compositional) differentiation (i.e., the absence
of and complete differentiation), measures of partitioning-oriented differentiation ranging be-
tween 0 and 1 can be designed in various ways [31]. One such measure is of the general form
D = (1 − α/γ)/(1 − α/ϕ), and it can be applied to any admissible measure of diversity for which
α is defined. D was suggested by Jost [32] for Rényi-diversity of order 2 and under the stipula-
tion of equal community sizes. The stipulation of equal community sizes implies ϕ = N � α for
Rényi-diversities, so that D = (1 − 1/β)/(1 − 1/N), where N is the number of communities and
β = γ/α [32, Eq. 10].

It may be tempting to interpret indices such as D in terms of partitioning diversity within
and between communities, where the extreme conditions appear when “all diversity resides
within communities” and when “all diversity resides between communities”. Passing over the
fact that “diversity between communities” conflicts with the concept of diversity, the phrasing
“all diversity resides between communities” does not address the situation of complete differ-
entiation. Complete differentiation does not exclude the existence of diversity within commu-
nities, in which case one could end up with the confusing statement that all diversity resides
between but some within communities. Thus “all diversity resides between communities” im-
plies that there is no diversity within communities (all communities are monomorphic), in-
cluding the possibility that types are shared between communities and that therefore
differentiation is not complete.

In the previous section on the duality of differentiation, it was pointed out that this view of
partitioning variation is covered by the notion of apportionment of variation to communities
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rather than of differentiation between them. Indeed, this difference in notion matters especially
in connection with the indices FST and GST, which constitute almost the standard for quantify-
ing subpopulation structure in population genetics. They are usually addressed as measures of
differentiation among populations but are sometimes also referred to as measures of fixation
(genetic monomorphy). The reference to differentiation has been criticized repeatedly, starting
with the creator of FST himself, Sewall Wright ([33]; see also [34] and, more rigorously, [32]).
Yet, as Wright emphasized right from the beginning (and as was recalled to memory by several
authors later), FST = 1 only in situations of complete monomorphy in all populations and
FST = 0 only in the absence of differentiation (the same holding for its generalization GST).
Hence, GST should more appropriately be addressed as a measure of partitioning-oriented
apportionment.

The extent to which this confusion of notions and categories of variation may have misled
the analysis of models and of experimental results is currently hard to judge. Jost [32] presented
some disquieting examples. Even addressing GST as an index of fixation is questionable unless
a meaningful definition is given of the opposite extreme of “complete fixation”, that is, of com-
plete absence of fixation. Since any degree of absence of fixation is reached by any degree of
polymorphism, it is, however, hard to imagine how such a definition could exist. Therefore, to
prevent misconceptions triggered by ambivalent terminology, measures such as GST should be
listed under the notion of partitioning-oriented apportionment, as suggested above. This could
also help to simplify decisions about which measure is more appropriate for analyzing “the
causes or consequences of population structure” [35].

In any case, the possibly most efficient and comprehensive means of keeping the two ap-
proaches to the partitioning of variation apart is to recall the above characterizations, according
to which differentiation describes the tendency of individuals of the same type to occur in the
same community, and apportionment describes the tendency of individuals of different type to
occur in different communities.

The example in Fig. 6 does not represent extreme distributions of types and community
memberships, but yet it reveals distinct assessments of the apportionment and differentiation
within the category of partitioning variation as indicated by the corresponding descriptors
D and GST. It demonstrates that the classical focus on the apportionment approach to parti-
tioning variation may miss important information on its differentiation aspect. Beyond this, it
also substantiates the considerable differences that may exist between categories of variation
when comparing the TC perspective of compositional differentiation with the CT perspective

of partitioning-oriented apportionment on the basis of the DTC
SD and GST values.

Of course, the dual perspective introduced in connection with compositional differentiation
can likewise be applied to all features of the partitioning of variation. Since it again simply fol-
lows from switching the variables T and C, it will not be considered in more detail in this paper.

Partitioning diversity into components
The term “partitioning”may relate to the decomposition of a set into disjunct subsets or to the
decomposition of one variable into several other variables (such as γ into α and β). Between
these two aspects, the partitioning of a variable, though less intuitive, is more popular and
therefore deserves some explanation. The decomposition of a (initial) variable into additional
(component) variables requires the existence of objects for which the states of all variables can
be scored. The set of component variables may then be considered to establish a decomposition
of the initial variable, if any pair of objects differing in the initial variable also differ in at least
one of the component variables. It follows that the states of the initial variable can be consid-
ered as a function (in the mathematical sense) of the states of the component variables. The
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underlying set of objects determines which combination of the states of the component vari-
ables are realized and are thus “admissible”. In the present situation, the objects are metacom-
munities, the initial variable is their γ-diversity, and the component variables are the α- and
β-diversity of the metacommunities. A special feature of the (component) variable α is that its
values obey the inequality α� γ (which transforms e.g. to β� 1 when diversity effective num-
bers are considered) for all admissible combinations of α- and β-values.

A fourth variable, the joint diversity ϕ, is required when defining partitioning-oriented mea-
sures of differentiation that consider variable community sizes. This variable is not an explicit
part of the classical concept of partitioning (total type) diversity into components. Its relation-
ship to differentiation indeed suggests that it could be addressed as some kind of β-diversity.
Yet by the above explanations this requires proof of its eligibility as a component of γ-diversity.
Given α-diversity as the other component it is, however, difficult to see how ϕ could explain
differences in γ that are not explained by α. This does of course not rule out the possibility that
ϕ could qualify as a component of total type diversity in combination with some variable other
than α. Pertaining studies do however not seem to exist. It thus appears that the role of differ-
entiation in defining components of diversity is currently not well understood. This, in turn,
sheds doubts on the role of classical β-diversity as a component of total type diversity that ac-
counts for the effects of differentiation (see also [28]).

Problems of dependence or relatedness among components of diversity are discussed by
Chao et al. [36]. In their discussions, the terms “dependence” or “relatedness” refer solely to re-
lationships between component variables. These relationships are determined by what is called
above “admissible combinations of states of the input variables”, and these are in turn specified
by the set of objects under consideration. One can therefore define admissible states for each
variable separately by the existence of at least one object that shows the state. The component
variables are then defined to be independent or unrelated, if for any choice of admissible states
of the individual variables there is an object that realizes this combination of states (so that the
combination is again admissible). Given this definition, it is easily verified that in the classical
setting, where β is specified as a function of γ and α, the α- and β-component of diversity are
independent, as stipulated by Jost [16]. This statement is not invalidated by the above critique
of β-diversity as a component that reflects the effects of differentiation.

Concluding remarks
The present approach is based on the elementary ingredients of variation, i.e., frequencies (or,
more general, representations) of types and the differences between them. It is shown that this
approach allows descriptors of variation of qualitative traits to be consistently extended to
quantitative traits. The basic classification of descriptors of variation within communities into
the categories of dispersion and diversity follows from this extension. Both of these categories
for within-community variation can be used in the measurement of differentiation among
communities, however with emphasis on different aspects relating to the categories of compo-
sitional differentiation (differences in trait distribution) and of the partitioning of variation
among communities.

Usage of the term “differentiation” in both of the categories compositional differentiation
and partitioning of variation is probably unfortunate, since it might obscure the intrinsic differ-
ence between the two categories. This difference is emphasized in the introductory sentences of
the “Partitioning of variation” section, where the prefix “partitioning-oriented” is added to dif-
ferentiation as a reminder that this kind of “differentiation” is to be understood as relating to a
component that is only a part of the total variation. Compositional differentiation, in contrast,
is defined without any reference to the total variation.
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The partitioning of diversity into components is almost always considered as the decompo-
sition of the total diversity (γ) in a metacommunity into the contribution of the diversities
within the communities (α) and a remainder that is thought of as the contribution of the differ-
ences between the communities. The latter is commonly addressed as β-diversity in ecology.
Yet, as a component of total diversity, β-diversity (which is not even a proper measure of diver-
sity) remains ambivalent as to what it represents. Common measures (all of which are func-
tions of γ and α-diversity) do not unequivocally accord with the concept of differentiation but
instead reflect tendencies towards monomorphy. As a “component” of total diversity, the idea
of β-diversity definitely needs conceptual reconsideration.

Among the innumerable applications of the present classification, some have already been dem-
onstrated above. The following two deserve special mention because of their broader implications.

Effective numbers are characteristic of diversity descriptors, but they may also serve to
quantify the number of types that support an observed dispersion, provided the latter is based
on a measure of dissimilarity. Descriptors of dispersion that are not based on dissimilarity mea-
sures cannot be traced back to (effective) numbers of types. Even though special measures of
dispersion do obey the evenness criterion and thus are also measures of diversity (such as the
Simpson index), one should be aware of the essential difference when interpreting them as de-
scriptors of diversity or of dispersion.

Because of its broad interest and varying terminological usage (see e.g. [37]), a brief final re-
mark seems appropriate on how phylogenetic diversity fits into the present classification of bio-
logical variation. The reconstruction of phylogenies relies on measures of difference or similarity
that indicate relatedness by common descent; as such they serve the reconstruction of monophy-
letic groups (clades) that are hierarchically organized (i.e., form an encaptic set structure). Such a
reconstruction is compatible with the difference measure (making it a phyletic distance), if the
differences between members of a clade are always smaller than their differences from organisms
that do not belong to this clade. For each threshold value of difference, this condition allows the
formation of a unique partition with clades as classes, in which members of the same class differ
by not more than the threshold value while members of different classes differ by more. These
partitions are commonly used for the identification of taxonomic categories or ranks. Descriptors
of phylogenetic diversity are then consistently defined for each such partition, as explained above
in connection with clustering methods (see also [38]). The distribution of phylogenetic diversity
across ranks can then be illustrated and analyzed with the help of diversity portraits.

Appendix A: Glossary
Trait - A set of mutually exclusive attributes of the members of a collection of objects. The indi-

vidual attributes define the states of the trait. For more detailed explanation of the trait
concept, see [39]. Traits may be of qualitative nature (i.e., the states of two objects are ei-
ther the same or different, such as specification of the species in a systematic category, the
alleles at a gene locus, community membership in a metacommunity, etc.) or of quantita-
tive nature (i.e., states can differ by varying amounts, e.g. metric amounts such as height,
length, diameter, etc.). For the trees in a central European forest community, for example,
the trait “species” has states Fagus sylvatica, Quercus robur, Q. petraea, Picea abies,
among many others. The qualitative trait “species” can be made quantitative by assigning
each pair of species a phylogenetic distance, which usually stipulates that species from the
same genus (e.g. Quercus) are more similar to each other than to species from different
genera. The qualitative trait “genotype at a specified gene locus” with states “A1A1”,
“A1A2”, etc. can be made quantitative by specifying the difference between states as the
proportion 0, 12 or 1 of alleles that the respective genotypes do not share at this locus.
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Community - Any collection or ensemble of individuals that are connected and delineated by
specified ecological or reproductive factors (including functional species communities,
populations as reproductive communities, etc.)

Metacommunity - Totality of all individuals in any of a specified set of communities
Type frequency - Relative quantitative representation of the presence of a type (or trait state)

in a community, often as the relative frequency of the individuals that carry the type
Difference between types - Assessment of qualitative difference (same or different, e.g. spe-

cies of a systematic category, alleles at a gene locus, community membership in a meta-
community) or quantitative difference (usually metric measurements, e.g. height,
proportion of non-shared alleles) between the types of two individuals

Norm of reaction - A norm of reaction is defined for any one genetic type and a trait in the ex-
pression of which the genetic type is involved. The differential effects of environmental
conditions on the expression of the trait can then be described by a mapping of these
conditions onto the trait expressions. This mapping is usually referred to as the reaction
norm of a genetic type (with respect to a specified trait and set of environmental
conditions).

Genotype-environment association - When genotypes are distributed at random over envi-
ronmental conditions, there is no association between them. Otherwise there is.

Genotype-environment interaction - Generally describes the failure to separate genetic from
environmental effects on a specified trait. This situation typically arises when norms of
reaction intersect, i.e. when two distinct genetic types express the same trait state in the
same environment.

Aspects of biological variation within communities:

Dispersion - Assessment of the spread of the differences between types in a community
(e.g. maximum difference, variance)

Diversity - Assessment of the number of types or clusters of types in a community, usually
with regard to their representation in terms of frequencies or relative sizes, respective-
ly. The intrinsic concept of diversity addresses numbers of types irrespective of their
frequencies (commonly referred to as “richness”). Diversity measures fulfill the even-
ness criterion, in that they never decrease whenever the difference in representation
between two types decreases while the sum of their representations remains the same.

Aspects of the distribution of biological variation over communities:

Compositional differentiation - Assessment of differences between communities for the
distribution of the trait states of a specified trait (CT perspective) or assessment of dif-
ferences between trait states for their distributions over communities (TC perspective)

Partitioning of variation - Assessment of the partition of the total (metacommunity) vari-
ation into variation within and between communities. There are two approaches: dif-
ferentiation describes the extent to which individuals with the same trait state or type
occur in the same community, and apportionment describes the extent to which indi-
viduals with different types occur in different communities.

Appendinx B: Proof of the evenness criterion
Lemma: Let g be a real-valued function defined on a closed interval, and let c be a number from
the interior of the interval. If g is (not necessarily strictly) concave then f(x): = g(x) + g(c − x) in-
creases (not necessarily strictly) as x approaches c/2 from above or below.

Proof: Consider f(x0) − f(x) = g(x0) − g(x) + g(c − x0) − g(c − x) with all arguments in the
interval of definition. Concavity implies that [g(x0) − g(x)]/[x0 − x] is monotonically non-
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increasing in x0 for fixed x and x0 6¼ x (non-increasing slope). For x< x0 � c/2, and therefore x0

� c − x0, one thus obtains [g(x0)−g(x)]/[x0−x]� [g(c−x0)−g(x)]/[c−x0−x], or [g(x0)−g(x)]� [g(c
−x0)−g(x)]�[x0−x]/[c−x0−x]. By the same means, since x� c − x, [g(c − x0) − g(x)]/[c − x0 − x]�
[g(c − x0) − g(c − x)]/[x − x0] or [g(c − x0) − g(c − x)]� [g(c − x0) − g(x)] � [x − x0]/[c − x0 − x].
Hence,

f ðx0Þ � f ðxÞ � ½gðc� x0Þ � gðxÞ� � x0 � x
c� x0 � x

þ ½gðc� x0Þ � gðxÞ� � x � x0

c� x0 � x
¼ 0

Since f(x) = f(c − x) it follows analogously that for c/2� x0 < x, f(x0)� f(x). QED
Proposition: If r is a real-valued function defined on the unit interval, and if p � r(p) is con-

cave, then Si pi � r(pi) fulfills the evenness criterion.
Proof: Let pi + pj = c, and set p = pi, pj = c − p and g(p) = p � r(p). Then the above Lemma ap-

plies, and Si pi � r(pi) increases as |pi − pj| decreases while pi + pj = c. QED—Also compare the
pertaining results of Patil & Taillie (1982, p.551).

Note: p � r(p) is concave, for example, if r is a decreasing and concave function of p.
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